Optical Nonreciprocity in Asymmetric Optomechanical Couplers

نویسندگان

  • Zheqi Wang
  • Lei Shi
  • Yi Liu
  • Xinbiao Xu
  • Xinliang Zhang
چکیده

We propose an all-optical integrated nonreciprocal device on the optomechanical platform with a large nonreciprocal bandwidth and low operating power. The device is based on an asymmetric silicon coupler consisting of two branches. One of them is a conventional strip waveguide fixed on the substrate, and the other is a freestanding nanostring suspended above a groove in the substrate. When light is launched into the coupler, the optical gradient force between the freestanding nanostring and the underlying substrate leads to the deflection of the nanostring, and finally results in destruction of the initial phase-matching condition between the two branches. The suspended branch would achieve distinct deflections when light is incident from different ports. The simulation results show a nonreciprocal bandwidth of 13.1 nm with operating power of 390 μW. With the advantages of simple structure, low power consumption and large operating bandwidth, our work provides a promising solution for on-chip passive nonreciprocal device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Nonreciprocity Based on Optomechanical Coupling

Optical isolation, nonreciprocal phase transmission, and topological phases for light based on synthetic gauge fields have been raising significant interest in the recent literature. Cavity-optomechanical systems that involve two optical modes coupled to a common mechanical mode form an ideal platform to realize these effects, providing the basis for various recent demonstrations of optomechani...

متن کامل

Nonreciprocity and magnetic-free isolation based on optomechanical interactions

Nonreciprocal components, such as isolators and circulators, provide highly desirable functionalities for optical circuitry. This motivates the active investigation of mechanisms that break reciprocity, and pose alternatives to magneto-optic effects in on-chip systems. In this work, we use optomechanical interactions to strongly break reciprocity in a compact system. We derive minimal requireme...

متن کامل

Enhancement of spin-wave nonreciprocity in magnonic crystals via synthetic antiferromagnetic coupling

Spin-wave nonreciprocity arising from dipole-dipole interaction is insignificant for magnon wavelengths in the sub-100 nm range. Our micromagnetic simulations reveal that for the nanoscale magnonic crystals studied, such nonreciprocity can be greatly enhanced via synthetic antiferromagnetic coupling. The nonreciprocity is manifested as highly asymmetric magnon dispersion curves of the magnonic ...

متن کامل

A Novel Approach for Generation of All-optical Ofdm Using Discrete Cosine Transform Based on Optical Couplers in a Radio-over-fiber Link

A novel method for100Gbpsall-optical OFDM using Discrete Cosine Transform in a Radio-Over-Fiber link is proposed. The system is designed simply using both symmetric and asymmetric passive optical couplers. DCT is achieved all-optically by adjusting the length and splitting ratio of the couplers. The performance of the system is compared with all-optical OFDM based on Discrete Fourier, Discrete ...

متن کامل

Energy-efficient on-chip optical diode based on the optomechanical effect.

We propose and experimentally demonstrate an energy-efficient optical diode based on the optomechanical effect. The optical signals could transmit during forward propagation while be blocked during backward propagation. When launching optical signal with a low power of 4.0 mW, the maximum resonance red-shift of the asymmetric silicon microring resonator (MRR) could be up to 0.74 nm, in this cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015